Dual contrast agent for computed tomography and magnetic resonance hard tissue imaging.
نویسندگان
چکیده
Calcium phosphate cements (CPCs) are commonly used bone substitute materials, which closely resemble the composition of the mineral phase of bone. However, this high similarity to natural bone also results in difficult discrimination from the bone tissue by common imaging modalities, that is, plain X-ray radiography and three-dimensional computed tomography (CT). In addition, new imaging techniques introduced for bone tissue visualization, like magnetic resonance imaging (MRI), face a similar problem. Even at high MRI resolution, the lack of contrast between CPCs and surrounding bone is evident. Therefore, this study aimed to evaluate the feasibility of a dual contrast agent, traceable with both CT and MRI as enhancers of CPC/bone tissue contrast. Our formulation is based on the use of silica beads as vectors, which encapsulate and carry contrast-enhancing nanoparticles, in our case, colloidal Gold and Superparamagnetic Iron oxide particles (SPIO). The bead suspension was incorporated within a calcium phosphate powder. The resultant cements were then tested both in vitro and in vivo in a femoral condyle defect model in rats. Results showed that the mechanical properties of the cement were not significantly affected by the inclusion of the beads. Both in vitro and in vivo data proved the homogeneous incorporation of the contrast within the cement and its visual localization, characterized by a short-term CT contrast enhancement and a long-term MR effect recognizable by the characteristic blooming shape. Finally, no signs of adverse tissue reactions were noticed in vivo. In conclusion, this study proved the feasibility of a multimodal contrast agent as an inert and biocompatible enhancer of CaP cement versus bone tissue contrast.
منابع مشابه
Bimodal magnetic resonance imaging-computed tomography nanoprobes: A Review
Bimodal imaging combines two imaging modalities in order to benefit from their advantages and compensate the limitations of each modality. This technique could accurately detect diseases for diagnostic purposes. Nanoparticles simultaneously offer diagnostic data via various imaging modalities owing to their unique properties. Moreover, bimodal nanoprobes could be incorporated into theranostic s...
متن کاملMultifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin
Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring. Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...
متن کاملA New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite
Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...
متن کاملAnalytical determination of the chemical exchange saturation transfer (CEST) contrast in molecular magnetic resonance imaging
Magnetic resonance based on molecular imaging allows tracing contrast agents thereby facilitating early diagnosis of diseases in a non-invasive fashion that enhances the soft tissue with high spatial resolution. Recently, the exchange of protons between the contrast agent and water, known as the chemical exchange saturation transfer (CEST) effect, has been measured by applying a suitable pulse ...
متن کاملMultifunctional GQDs-Coated Fe/Bi Nanohybrids for CT/MR Dual Imaging and in vitro Photothermal Therapy
Introduction: The multipurpose nanocomposites have gained growing biomedical attention as promising nanotheranostics to improve The effectiveness of cancer treatment, which concurrently combine advantages of the therapeutic and diagnostic techniques into one nanosystem. The “all-in on” probes not only help to ablate cancerous tumors, but also allow to optimize and monitoring of...
متن کاملDual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases
Temporal bone chondroblastoma is an extremely rare benign bone tumor. We encountered two cases showing similar imaging findings on computed tomography (CT), magnetic resonance imaging (MRI), and dual-time-point 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. In both cases, CT images revealed temporal bone defects and sclerotic changes around the tumor. Most parts of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tissue engineering. Part C, Methods
دوره 19 6 شماره
صفحات -
تاریخ انتشار 2013